------------------------------------------------------------------------ -- The Agda standard library -- -- Basic definitions for morphisms between algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Relation.Binary.Morphism.Definitions {a} (A : Set a) -- The domain of the morphism {b} (B : Set b) -- The codomain of the morphism where open import Algebra.Core open import Function.Base open import Level using (Level) private variable ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Basic definitions Homomorphic₂ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _ Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ = ∀ {x y} → x ∼₁ y → ⟦ x ⟧ ∼₂ ⟦ y ⟧ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.3 Morphism : Set _ Morphism = A → B {-# WARNING_ON_USAGE Morphism "Warning: Morphism was deprecated in v1.3. Please use the standard function notation (e.g. A → B) instead." #-}